極紫外、軟X射線CCD相機(jī)-ALEX-i 成像系列
用于XUV/EUV/X射線能段的成像應(yīng)用
- 產(chǎn)地: 德國(guó)
- 型號(hào): ALEX-i 1k1k、ALEX-i 2k2k、ALEX-i 2k2k plus、ALEX-i 4k4k
- 品牌: greateyes
用于XUV/EUV/X射線能段的成像應(yīng)用
出身于柏林的ALEX是德國(guó)greateyes公司最新研發(fā),應(yīng)用于極紫外,真 空紫外和X射線能段的光譜及影像相機(jī)。ALEX集成了目前最前沿的低噪 聲電子系統(tǒng)和超低溫制冷技術(shù),同時(shí)保持了緊湊小巧的設(shè)計(jì)。全新的設(shè)計(jì) 允許從50 kHz至5 MHz靈活地選擇所需讀出速度。18-bit 的模數(shù)轉(zhuǎn)換能 夠利用CCD傳感器的全動(dòng)態(tài)范圍,以達(dá)到更好表現(xiàn)和更高的信噪比。為 匹配不同應(yīng)用的需求,該相機(jī)包括多種類(lèi)型的傳感器可供用戶選擇。同時(shí) ALEX的低噪聲使之成為極弱信號(hào)條件下所需的理想相機(jī),它將給您的 光譜學(xué)和影像研究帶來(lái)前所未有的可能性。
◆ 制冷溫度低至-90℃;
◆ GigE & USB3.0 雙數(shù)據(jù)接口;
◆ 超高真空兼容,低至10-10mbar;
◆ 量子效率高達(dá)98%;
◆ 18 bit模數(shù)轉(zhuǎn)換
◆ 雙讀出頭,四讀出頭
通用參數(shù)
讀出頻率 | 50 kHz, 250kHz, 1 MHz, 3 MHz(5 MHz 用于查看模式; 頻率可定制) |
AD 轉(zhuǎn)換分辨率 | 18-bit |
線性度 | 優(yōu)于 99% |
CCD 外延層厚度 | 標(biāo)準(zhǔn)15 μm, 深耗盡類(lèi)型40 μm |
真空饋通法蘭 | models IsO-F DN63,刀日封接 CF DN63,CF DN100,CF DN160 |
真空兼容性 | 刀口封接法蘭: 10-10 mbar (超高真空) |
烘烤溫度 | Max. +80 °C |
法蘭距 | 1k1k camera with CF DN63: 6 mm; 2k2k with CF DN63: 5 mm; 2k2k plus & 4k4k cameras with CF DN160:-27 mm (all disctance can be customised |
溫度監(jiān)控 | 于CCD 傳感器上,及半導(dǎo)體制冷的熱端 |
數(shù)據(jù)傳輸 | 千兆以太網(wǎng)GigE,USB3.0 |
軟件 | greateyes Vision 軟件(Windows 7 / 10) |
SDK 和驅(qū)動(dòng) | DLL for Windows; LabVIEW, EPICS, Linux, Python以及Tango驅(qū)動(dòng) (可選) |
TTL 接口信號(hào) | Sync out, shutter out, 2 external trigger in |
工作條件 | 環(huán)境溫度: 0°C to 35°C ambient, 相對(duì)濕度<80% (無(wú)結(jié)露) |
供電 | 1k1k & 2k2k: 80-264 VAC (115/230典型值), 47-63 Hz (50/60典型值), max. 1.1 A (230 V) / 1.9 A (115 V) 2k2k plus & 4k4k: 85-264 VAC (115/230典型值), 47-63 Hz (50/60典型值), max. 1.9 A (230 V) / 3.8 A (115 V) |
認(rèn)證 | CE |
尺寸 | 8.3 cm (3.27?) × 10.0 cm (3.94?) × 10.9 cm (4.29?) (W × H × L, 1k1k & 2k2k camera body) 13.7 cm (5.39?) × 13.7 cm (5.39?) × 13.3 cm (5.24?) (W × H × L, 2k2k plus & 4k4k camera body) |
重量 | 2.9 kg (1k1k & 2k2k, CF DN63) / 4.3 kg (1k1k & 2k2k, CF DN 100) / 12.5kg (4k4k, CF DN160) |
相機(jī)型號(hào)
ALEX-i 1k1k | ALEX-i 2k2k | ALEX-i 2k2k plus | ALEX-i 4k4k | |||||
芯片類(lèi)型 | FI BI | BI DD | FI BI | BI DD BI UV1 | BI | BI | BI DD BI UV1 | |
像素規(guī)格(標(biāo)稱(chēng)) | 1024 x 1024(FI) | 2048 x 2052 | 2048 x 2064 | 4096 x 4112 | ||||
像素尺寸 | 13 μm × 13 μm | 13.5 μm × 13.5 μm | 15 μm × 15 μm | 15 μm × 15 μm | ||||
滿井容量 | 100 keˉ | 120 keˉ | 100 keˉ | 150 keˉ | 150 keˉ | 150 keˉ | 350 keˉ | |
讀出噪聲典型值(eˉ) @ 50 kHz | 3.4 | 3.8 | 4.6 | 4.8 | 3.0 | |||
可調(diào)增益(counts/eˉ) Standard mode High capacity mode | 1 | 1 | 0.6 | 0.6 | 1 | |||
暗電流(eˉ/pixel/s) | @-100°C 0.00015 0.0005 | @-90°C | @-90°C 0.00008 | @-90°C | ||||
芯片等級(jí) | Grade 0 or grade 1 (標(biāo)準(zhǔn)) |
選擇法蘭類(lèi)型
可選配件及軟件
· X 射線斷層成像
· 傅立葉變換全息圖
· X 射線熒光透視成像
· 相干衍射成像(CDI)
· 電子疊層衍射(Ptychography)成像
· 掠入射小角 X 射線散射(GISAXS)
GE_ALEX_i成像系列_datasheet 2021-5-12.pdf
1. Loetzsch R, Beyer H F, Duval L, et al. Testing quantum electrodynamics in extreme fields using helium-like uranium[J]. Nature, 2024, 625(7996): 673-678.
2. Ossiander M, Meretska M L, Hampel H K, et al. Extreme ultraviolet metalens by vacuum guiding[J]. Science, 2023, 380(6640): 59-63.
3. Eller F, McNeill C R, Herzig E M. Tackling P3HT: Y‐Series Miscibility Through Advanced Processing for Tunable Aggregation[J]. Advanced Energy Materials, 2024, 14(29): 2304455.
4. Sun T, Sun G, Yu F, et al. Soft X-ray ptychography chemical imaging of degradation in a composite surface-reconstructed Li-rich cathode[J]. ACS nano, 2020, 15(1): 1475-1485.
5. Wen J J, Huang H, Lee S J, et al. Observation of two types of charge-density-wave orders in superconducting La2-x Sr x CuO4[J]. Nature Communications, 2019, 10(1): 3269.
6. Rottke H, Engel R Y, Schick D, et al. Probing electron and hole colocalization by resonant four-wave mixing spectroscopy in the extreme ultraviolet[J]. Science advances, 2022, 8(20): eabn5127.
7. Pan B Y, Jang H, Lee J S, et al.Intertwined spin and orbital density waves in MnP uncovered by resonant soft x-ray scattering[J]. Physical Review X, 2019, 9(2): 021055.
8. Bothra U, Hui P, Tan W L, et al. Visualization of sub-nanometer scale multi-orientational ordering in thin films of polymer/non-fullerene acceptor blends[J]. Journal of Materials Chemistry A, 2022, 10(46): 24662-24675.
9. Schupp R, Torretti F, Meijer R A, et al. Efficient generation of extreme ultraviolet light from Nd: YAG-driven microdroplet-tin plasma[J]. Physical Review Applied, 2019, 12(1): 014010.
10. Mantouvalou I, Witte K, Gr?tzsch D, et al. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy[J]. Review of Scientific Instruments, 2015, 86(3).
11. Wachulak P W, Torrisi A, Bartnik A, et al. Desktop water window microscope using a double-stream gas puff target source[J]. Applied Physics B, 2015, 118: 573-578.
成立于2008年的greateyes,是以德國(guó)柏林洪堡大學(xué)的技術(shù)為基礎(chǔ),迅速發(fā)展成為國(guó)際知名的先進(jìn)探測(cè)器生產(chǎn)企業(yè)。如今,其科研與工業(yè)客戶群體已遍布多個(gè)國(guó)家。
greateyes開(kāi)發(fā)、生產(chǎn)并銷(xiāo)售高性能科學(xué)相機(jī)。其作為精確探測(cè)器,被廣泛應(yīng)用于成像與譜學(xué)應(yīng)用領(lǐng)域。同時(shí),greateyes公司也生產(chǎn)用于太陽(yáng)能產(chǎn)業(yè)的電致熒光與光致熒光檢測(cè)系統(tǒng)。
型號(hào)參數(shù):
ALEX-i 1k1k | ALEX-i 2k2k | ALEX-i 2k2k plus | ALEX-i 4k4k | |||||
芯片類(lèi)型 | FI BI | BI DD | FI BI | BI DD BI UV1 | BI | BI | BI DD BI UV1 | |
像素規(guī)格(標(biāo)稱(chēng)) | 1024 x 1024(FI) | 2048 x 2052 | 2048 x 2064 | 4096 x 4112 | ||||
像素尺寸 | 13 μm × 13 μm | 13.5 μm × 13.5 μm | 15 μm × 15 μm | 15 μm × 15 μm | ||||
滿井容量 | 100 keˉ | 120 keˉ | 100 keˉ | 150 keˉ | 150 keˉ | 150 keˉ | 350 keˉ | |
讀出噪聲典型值(eˉ) @ 50 kHz | 3.4 | 3.8 | 4.6 | 4.8 | 3.0 | |||
可調(diào)增益(counts/eˉ) Standard mode High capacity mode | 1 | 1 | 0.6 | 0.6 | 1 | |||
暗電流(eˉ/pixel/s) | @-100°C 0.00015 0.0005 | @-90°C | @-90°C 0.00008 | @-90°C | ||||
芯片等級(jí) | Grade 0 or grade 1 (標(biāo)準(zhǔn)) |
· X 射線斷層成像
· 傅立葉變換全息圖
· X 射線熒光透視成像
· 相干衍射成像(CDI)
· 電子疊層衍射(Ptychography)成像
· 掠入射小角 X 射線散射(GISAXS)
GE_ALEX_i成像系列_datasheet 2021-5-12.pdf
文獻(xiàn):
1. P. Wachulak, M. Duda, A. Bartnik, A. Sarzyński, ?. W?grzyński and H. Fiedorowicz, 2-D elemental mapping of an extreme ultraviolet-irradiated PET with a compact near edge X-ray fine structure spectromicroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, Volume 145, July 2018, Pages 107-114
2. P. Wachulak, A. Bartnik and H. Fiedorowicz, Optical coherence tomography (OCT) with 2?nm axial resolution using a compact laser plasma soft X-ray source, Nature Scientific Reports, volume 8, Article number: 8494 (2018)
3. P. Wachulak, M. Duda, A. Bartnik, A. Sarzyński, ?. W?grzyński, M. Nowak, A. Jancarek and H. Fiedorowicz, Compact system for near edge X-ray fine structure (NEXAFS) spectroscopy using a laser-plasma light source, Opt. Express 26, 8260-8274 (2018)
4. A. Jonas, T. Meurer, B. Kanngie?er and I. Mantouvalou, Reflection zone plates as highly resolving broadband optics for soft X-ray laboratory spectrometers, Review of Scientific Instruments 89, 026108 (2018)
5. T. Pflug, J. Wang, M. Olbrich et al., Case study on the dynamics of ultrafast laser heating and ablation of gold thin films by ultrafast pump-probe reflectometry and ellipsometry, Appl. Phys. A (2018) 124: 116
6. C. Buerhop, S. Wirsching, A. Bemm et al. Evolution of cell cracks in PV modules under field and laboratory conditions. Prog Photovolt Res Appl. 2018;26:261–272
7. H. Stiel, J. Braenzel, A. Dehlinger, R. Jung, A. Luebcke, M. Regehly, S. Ritter, J. Tuemmler, M. Schnuerer and C. Seim, Soft x-ray nanoscale imaging using highly brilliant laboratory sources and new detector concepts, Proc. SPIE 10243, X-ray Lasers and Coherent X-ray Sources: Development and Applications, 1024309 (17 May 2017)
8. M. F. Nawaz, M. Nevrkla, A. Jancarek, A. Torrisi, T. Parkman, J. Turnova, L. Stolcova, M. Vrbova, J. Limpouch, L. Pina and P. Wachulak, Table-top water-window soft X-ray microscope using a Z-pinching capillary discharge source, JINST, 2016, Vol. 11 PO7002
9. I. Mantouvalou, K. Witte, W. Martyanov, A. Jonas, D. Gr?tzsch, C. Streeck, H. L?chel, I. Rudolph, A. Erko, H. Stiel and B. Kanngie?er, Single shot near edge x-ray absorption fine structure spectroscopy in the laboratory, Appl. Phys. Lett. 108, 201106 (2016)
10. S. Fazini?, I. Bo?i?evi? Mihali?, T. Tadi?, D. Cosic, M. Jak?i?, D. Mudronja, Wavelength dispersive μPIXE setup for the ion microprobe, Nucl. Instr. Meth. Phys. Res. Sec. B, 2015, Vol. 363, pages 61-65
11. A. Hafner, L. Anklamm, A. Firsov, A. Firsov, H. L?chel, A. Sokolov, R. Gubzhokov, and A. Erko, Reflection zone plate wavelength-dispersive spectrometer for ultra-light elements measurements, Opt. Express, 2015, Vol. 23, No. 23:29476-29483
12. P. W. Wachulak, A. Torrisi, A. Bartnik, D. Adjei, J. Kostecki, L. Wegrzynski, R. Jarocki, M. Szczurek, H. Fiedorowicz, Desktop water window microscope using a double?stream gas puff target source, Applied Physics B, 2015, 118:573–578
13. I. Mantouvalou, K. Witte, D. Gr?tzsch, M. Neitzel, S. Günther, J. Baumann, R. Jung, H. Stiehl, B. Kanngie?er, W. Sandner, High average power, highly brilliant laser-produced laser plasma source for soft X-ray spectroscopy, Review of Scientific Instruments, Vol. 86, Issue 3, 2015
14. T. Kra?hling, A. Michels,S. Geisler, S. Florek, J. Franzke, Investigations into Modeling and Further Estimation of Detection Limits of the Liquid Electrode Dielectric Barrier Discharge, Analytical Chemistry, 2014, 86(12), 5822-8